SPRING 2024: BONUS PROBLEM 3 SOLUTION

For the matrix $A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$, write its characteristic polynomial as $p_{A}(x)=x^{3}+c_{1} x^{2}+c_{2} x+c_{3}$.

1. Express c_{1} and c_{3} in terms of the trace and determinant of A. (2 points)
2. Express c_{2} in terms of the matrix A^{\prime} from the lecture of February 28. A^{\prime} is called the adjugate or classical adjoint of A. (2 points)
Solution. We first note that, an easy calculation gives

$$
\begin{aligned}
p_{A}(x) & =x^{3}-(a+e+i) x^{2}+\{(e i-h f)+(a i-g c)+(a e-b d)\} x-(a f h-a e i-b f g+b d i-c d h+c e g) \\
& =x^{3}-\operatorname{tr}(A) x^{2}+\left(\left|A_{11}\right|+\left|A_{22}\right|+\left|A_{33}\right|\right) x-\operatorname{det}(A) \\
& =x^{3}-\operatorname{tr}(A) x^{2}+\operatorname{tr}\left(A^{\prime}\right) x-\operatorname{det}(A)
\end{aligned}
$$

where A^{\prime} is the classical adjoint of A. Thus, $c_{1}=-\operatorname{tr}(A), c_{2}=\operatorname{tr}\left(A^{\prime}\right)$, and $c_{3}=-\operatorname{det}(A)$.

